
Principles of Statistical Modeling: Miniproject I

A Short Tourist Flight over the lands of Basketball Statistics

MARK KOERNER

May 15, 2019

Introduction

The objective of this Miniproject is to analyze the structure of a chosen dataset. I chose the NCAA

Men’s March Madness dataset for this project, which is part of the annual NCAA ML Competi-

tion[Kaggle, 2019] to predict the winners for each game of the National Collegiate Athletics As-

sociation (NCAA) Basketball Championship playoff tournament. There are numerous datafiles docu-

menting different aspects of the College basketball world which are part of the competition, such as

rankings for each team, regular season and playoff statistics for past years dating back to 2003 as well

as more information on the teams and game locations. I chose to focus mostly on the RegularSea-

sonDetailedResults.csv file, as it offers the most breadth and the most opportunity for exploration

and feature extraction. In the first section, I will go into further detail regarding my motivation for

choosing this particular dataset. In the second section, I will give more background on the game of

basketball and introduce the general structure of the dataset, whereas I will take a deeper look at the

raw random variables in the following section. Lastly, I will talk about feature extraction and give an

outlook on the challenges for predicting actual games, followed by the conclusion.

1 Motivation

The first time I had come across this dataset was as part of the Kaggle Competition in 2018, when I

was looking for a way to apply my then limited knowledge of Data Analysis with a field I have had

a passion for almost my entire life. I started playing basketball when I was 7, and both my parents

and my sister are avid basketball players, so I never had much of a choice in what sport to play. In all

seriousness though, basketball is one of my biggest passions and was a large part of my life growing

up. In addition, I had been following College Basketball in the U.S. for a couple of years, and thus
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was familiar with the NCAA season structure and most of the rule peculiarities that are specific to the

league. Even though I had a good amount of domain knowledge, I struggled with the structure of

the dataset, in particular manipulating the dataset, extracting useful features and building a model.

After not finding the time to participate in the competition this year, I figured it would be a useful

exercise to take a more detailed look at the structure of the dataset before potentially participating

again next year.

2 Background and Dataset Structure

In this section, I will describe and explore the factors that make teams win basketball games by look-

ing at regular season game results. First, I will give a little background on the game of basketball and

the NCAA, then describe the experimental design, and finally explore the provided game statistics.

2.1 Basketball Background

Basketball is a team game, where both teams, each comprised of 5 players, attempt to score points

by throwing the ball in the respective hoop which the other team is trying to defend. The game is

competitively played indoors on a rectangular court, with the two baskets on the opposing shorter

ends of the court. Players are allowed to advance the ball by dribbling, i.e. bouncing the ball on the

court without fully catching it between bounces, or passing to other players on the team. The NCAA

rules dictate that the game is played in two 20 minute periods, at the end of which the team that

has scored the most points wins. In case of a tie, additional 5 minute overtime periods are played

until a winner is determined. Player substitutions are allowed when the ball goes out of bounds or

when a foul is committed by a player. Generally speaking, a foul is committed when a player initiates

unnecessary or excessive contact with a player on the other team. Each player is allotted 5 personal

fouls per game, after which the player is expelled from the game.

2.2 Experimental Design

Before actually looking at the available data, I decided to take a step back to describe the scenario

in which the data was collected in terms of the five components introduced in the course: the reality

segment of interest (RSOI), the set of observation opportunities (OO), the observation procedure

(OP), the observation acts (OA) and the data value space (DVS).
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NCAA Basketball Game

RSOI All Division I NCAAMen’s Basketball Games (in this case from the 2003 season until today)

OO Any time an NCAA sanctioned game occurs between two Division I basketball teams.

OP When it comes to just determining the winner of the game, all one would have to do is

keep track of the points scored of either team and then declare the team with the higher

point total the winner. During NCAA games, the scorer’s table keeps track of the score and

other statistics and publishes it to the scoreboard as well as to online websites providing

real-time statistics for each game. While it would not be a proper scientific experimental

setup, one would not even have to attend the games to be able to determine the winner.

OA An observation act occurs when such a game is carried out.

DVS The data value space for whether a team wins or loses is a boolean [win, lose], similar to

die throwing. For most other statistics, the value is derived by counting the occurrences

of certain actions for both teams. A realistic DVS for most statistics would be all natural

numbers in the interval [0, 200] or just N.

The actual competition expects a probabilistic output of one team winning over the other in the

form of [Team 1 loses, Team 1wins] with the outcome in the interval [0,1], which is why the above

setup was chosen. Note that the above setup is for games that have already happened, whereas the

actual competition expects a future prediction where the described statistics are obviously not yet

available. But before we go further into the actual competition, let us take a look at the impact of

traditional basketball statistics on winning other than "whoever scores more points wins the game".

2.3 Dataset Structure

Before we go into the actual statistics, we have to first learn to navigate the dataset. The regular

season dataset features 82041 observations broken down in 34 variables. Ignoring the Team IDs

and the Game Location, the dataset is made up of 31 numerical random variables: the number of

overtimes that were played NumOT, the season variable Season, the day of the season DayNum and 14

game statistics for both teams. All of the basketball statistics in this dataset are counted by volunteers

on the scorer’s table, meaning all are RVs are of the form:

Xi : Ω→ N (i ∈ I) (1)

In particular, the dataset is already ordered by the winning team and losing team for each game.

The variable names for the game statistics are preceded by W for the winning team or a L for the

losing team, where the WTeamID and LTeamID fields allow us to attribute the game outcome to a
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specific team. The rest of the variables are described in more detail below according to the Kaggle

descriptions [Kaggle, 2019]:

Variable Descriptions

Score Points scored by the respective team

FGM Field Goals Made: the count of successful shots for each team

FGA Field Goals Attempted: the count of attempted shots for each team

FGM3 Three Pointers Made: the count of successful shots taken behind the three point line

FGA3 Three Pointers Attempted: the count of attempted three point shots

FTM Free Throws Made: the count of successful free throws made; a player is awarded a free

throw after a foul when the player was in the process of shooting the ball or after the

team has committed a certain number of fouls per period.

FTA Free Throws Attempted: the count of attempted free throws

OR Offensive Rebounds: the count of instances where the ball is retrieved by the attacking

team after a missed shot attempt

DR Defensive Rebounds: the count of instances where the ball is retrieved by the defending

team after a missed shot attempt

Ast Assists: the count of instances where a pass from a teammate is immediately followed by

a successful shot attempt

TO Turnovers: the count of instances where a member of one team loses the ball to a member

of the opposing team without shooting the ball

Stl Steals: the count of instances where a member of one team directly the ball to a member

of the opposing team without shooting the ball

Blk Blocks: the count of shots that the opposite team takes which are blocked or rejected

before reaching the hoop

PF Personal Fouls: the count of fouls committed by all members of a team

As for the variables that are not in-game event based statistics, they contain temporal and location

information. The variable Location is a discrete variable with values in the set S = {H,A,N}, which

denotes whether the game was played at home, away, or in a neutral location from the winning teams

perspective. The variable Season contains the year in which that season’s NCAA Basketball Tourna-

ment was held. This distinction is necessary as the season usually starts in the fall of the previous

year. The DayNum is another natural number variable, which counts the number of days elapsed

from an arbitrary starting date for that season. The variable is designed such that the regular season
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always ends on Day 132, so the value for the regular season dataset is constrained to the interval [0,

132][Kaggle, 2019].

It should be noted that all of these statistics are counted by a team of professionals as well as

volunteers for each game. While the dataset is clean from missing values and severe outliers as it is

cleaned by the Kaggle Team prior to publication, the individual game statistics cannot be taken as the

absolute truth. The possibility for human error, whether intentional or not, is fairly high especially

given the extensive nature of the dataset. It has become basketball tradition to always distrust the

game statistics collected at away games, especially at semi-professional or lower levels of play. With

that being said, the NCAA holds teams to a very high standard, and as a whole the dataset should

give a fairly accurate representation of the underlying trends and distributions.

3 Raw Data Exploration

In order to get a better sense of the game statistics, I decided to take a closer look at the sample

distributions of the random variables across all games. In essence, I wanted to compare the distribu-

tions of game statistics for the winning team versus the losing team. In order to visually assess the

sample distribution of a discrete numerical random variable, the easiest way is to look at a histogram

displaying the counts for each value. As an example, figure 1 shows a histogram for the variable

WScore. The distribution looks approximately Gaussian and is centered around 75 with most values

falling in the interval [55, 95]. Histograms provide a good visual approximation for the distribution

of discrete numerical variables, as the distribution of such random variables is defined by its prob-

ability mass function. The p.m.f. of a sample can be described as the fraction of observations with

a particular value for all values in the sample space. Specifically, given the associated σ-field of a

discrete numerical random variable Pot(N), i.e. the power set of its sample space, its distribution

would be given by the function

p : N→ [0, 1], x→ PWScore({x}), (x ∈ N). (2)

In practice, the sample distribution can thus be approximated by count(WScorei = x)/N .

Yet, when comparing distributions, looking at two histograms makes it very awkward and laborious

to detect differences. A much more elegant way is to estimate sample distributions via Kernel Density

Estimation, and to examine the resulting graphs on the same grid.
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Figure 1: Histogram of Winning Team Game Score

3.1 Kernel Density Estimate

In essence, Kernel Density Estimation applies a kernel with a certain assumed distribution centered

at each data point, and then locally averages and smoothes the resulting densities to approximate

a density estimate for the entire sample. Equation (3) describes the Parzen density estimate for a

Gaussian Kernel with centered mean and standard deviation λ [James et al., 2013].

f̂X(x) =
1

N

N∑
i=1

φλ(x− xi) (3)

where f̂X is the kernel density estimate and φ denotes the Gaussian Kernel. In practice, λ is

also called the bandwidth parameter and is either applied as a scalar to the standard deviation

or replaces it entirely, and ultimately determines the relative smoothness of the density estimate

[Waskom, 2018].

While certainly useful for estimating and comparing sample distributions, it must be noted that

this method’s estimates are based on prior assumptions about the structure of the underlying dis-

tribution. While the histogram in Figure 1 as well as histograms for other variables look to be ap-

proximately normally distributed, it is still a tricky assumption to make. In addition, kernel density

estimation is usually reserved for continuous data, and its use in the context of the raw data is only

for visualization purposes.

3.2 Graphical Comparison of Sample Distributions

Instead of going directly into the shooting statistics, which have a very direct impact on the outcome

of a game in terms of the score, I wanted to first take a closer look at the supporting statistics such as
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Assists, Turnovers, Steals and Rebounds. In particular, assists are actions that are directly associated

with field goals and thus points scored, meaning that a large number of assists should potentially

be associated with winning as more points are being scored. The scatterplot in Figure 2 confirms a

positive correlation between WScore and WAst.

Figure 2: Scatterplot of WAst vs WScore

When it comes to the distributions, Figure 3 shows a clear difference in the kernel density es-

timates for WAst and LAst. While the distributions show a large overlap, the WAst distribution is

centered around a higher value than the LAst distribution.1 This does not mean, however, that the

winning team’s assist total is always higher than the losing team’s assist total. Rather, the difference

between the winning team’s the losing team’s assist total AstDiff = WAst−LAst seems to be nor-

mally distributed itself. While most of the winning teams do seem to post higher assist totals than

their counterparts, a relatively large amount of games have been won by teams that have posted

lower assist totals than their counterparts.

1Notice the use of the word center as opposed to mean, as the center of the distribution is likely close to the sample
mean but potentially different. Additionally, the difference inmean could be determined as "significant" through hypothesis
testing, but this exploration section is mostly concerned with exploring patterns rather than labelling sample distributions
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Figure 3: Kernel Density Estimates of WAst and LAst; Histogram of the assist difference between
winning and losing teams

Similarly, turnovers result in the loss of possession of the basketball, meaning the team loses the

chance to score points in that particular offensive possession. Therefore, a higher value for turnovers

should have a negative effect on the number of points scored and ultimately could be a factor in

losing. When looking at the scatterplot in Figure 5, there does not seem much of a correlation

between the two random variables.

Figure 4: Scatterplot of LTO vs LScore

This is confirmed when looking at Figure 5, which shows the estimated distribution for bothWTO

and LTO. The distributions seem much more similar as compared to the assist distributions, and only

show a slight difference in terms of the center value. It is important to note that a smaller number

of turnovers is desirable, so lower values for winning teams are not a surprise.
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Figure 5: Kernel Density Estimates of WTO and LTO

In addition to those two random variables, I created similar plots for all game statistics. All of

them confirmed my intuition, namely that winning teams on average record a higher number of

positive actions and a lower number of negative actions within a game, which seems fairly standard.

One last interesting observation was that both winning and losing teams seemed to take a similar

amount of shots each game, meaning the score difference originates from the winning team making

more shots in the same number of attempts. In a sense, both FGM and FGA are different variants

of the same random variable process. When looking at a particular game as a reality segment of

interest, a player attempting a shot constitutes an observation act. FGA counts the number of such

observation acts, whereas FGM counts the success events. In a sense, each shot is an event with

binary outcomes [miss, make]. Thus, combining the two would create the field goal success rate

for each particular game. As seen in Figure 6, the difference in the distributions is much larger as

compared to assists and turnovers. Again, this is most likely due to the fact that made shots have a

direct impact on the outcome of the game.
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Figure 6: Kernel Density Estimates for Field Goal Percentage

4 Combinations of Random Variables

Besides the raw data, I also decided to extract some features. Most of these features would be

described as advanced statistics in basketball terms, but can mostly be described as combinations of

random variables. An easy example would be the Assist to Turnover ratio (ATR), which is calculated

as Ast/TO. Both are independent random values, such that Ast, TO : Ω→ N. The sample space of

ATR is thus comprised of any possible solution for Ast/TO. By substituting in the sample spaces and

looking at the limits for both, we can approximate the resulting sample space:

lim
Ast→∞

lim
TO→0

Ast

TO
→∞

lim
Ast→0

lim
TO→∞

Ast

TO
→ 0

ATR : Ω→ [0,∞)

(4)

There are a couple of things to note here, namely that combining the variables in such a way

moves the sample space from N → Q. As both Ast and TO only feature positive integers, however,

the sample space can be further defined as Q ∈ [0,∞). In addition, the equation for ATR requires

that TO 6= 0. In practice, when a team commits 0 turnovers, the value is usually replaced by 1 such

that ATR = Ast.

In terms of basketball, the actions that cause Assists and Turnovers are somewhat related, as both

can be committed by attempting to pass the ball to a teammate. Yet, there are numerous other actions

that can lead to a turnover as well. Overall, the measure is seen as an indicator for how effective a
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team is in creating scoring opportunities by sharing the ball. Figure 7 shows the distributions for ATR,

again split by winning and losing team. To no surprise, the distributions look slightly right-skewed

which is not out of the ordinary for such a ratio. The boxplot in Figure 8 confirms this sentiment.

The distribution for the losing teams is centered below 1, whereas the winning teams’ distribution is

centered above 1, meaning that losing teams are likely to record more turnovers than assists.

Figure 7: Kernel Density Estimate of Assist to Turnover Ratio split by game outcome

Figure 8: ATR Boxplot

Other than simple ratios between two independent random variables, there is also a basketball

game characteristic that can be approximated from the data. A team can only score when it has the

ball, so each duration of time where a team has the ball is labelled a possession, which can generally

end in either a shot or a turnover. Possessions are not generally recorded as a game statistic, but can

be inferred from the aforementioned statistics. Specifically, an often-used formula for Possession was

presented by Ken Pomeroy [Pomeroy, 2004]:

Pos = (FGA−OR) + TO + 0.44(FTA) (5)
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Offensive Rebounds are subtracted from Field Goal Attempts, as they allow a team to retain posses-

sion. In addition, Free Throw Attempts are scaled because teams are awarded anywhere between 1

to 3 free throws depending on the preceding play, and 0.44 is a value that has historically yielded

the most accurate approximations. The Pos statistic is then calculated for both teams, after which it

is averaged as both teams are expected to have a fairly equal amount of possessions per game. Thus,

possessions themselves are not a very helpful factor in assessing why teams win or lose games as

they are the same value for both teams. Rather, Pos is usually used to calculate possession based

efficiency statistics to differentiate between teams that post higher scores simply due to playing at a

faster pace and teams that post high scores due to higher scoring efficiency.

Therefore, an often-used efficiency metric is the Points per Possession: PPos = Score/Pos. Sim-

ilarly to ATR, the data value space is [0,∞). The kernel density estimates show a very clear split

between the two distributions, with LPPos distribution centered around 1.0 and WPPos centered

around 1.2. Considering most games have a possession value between [50, 80], this 0.2 difference

is quite substantial.

Figure 9: Kernel Density Estimate of Points Per Possession split by game outcome

Besides looking at the game outcome, this efficiency statistic also allows us to compare the

progress college basketball has made over the years. Specifically, an important trend in professional

basketball has been the increasing value put on the 3 point shoot for scoring efficiency reasons.

Specifically, high-level teams average around a 45% 2 point shooting success rate and a 35% 3 point

shooting success rate. Besides some other added benefits, the expected point value from shooting

3 point shots is higher given the success rates, which is why teams have taken increasingly more

three point attempts over the years. Thus, it would be interesting to see whether college basketball

teams have shown increased scoring efficiency over the years. Although the visual increase is very
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slight in Figure 10, the overall Point per Possession have increased around 0.03 since 2003, which is

still a fairly large increase considering the nature of the variable. It is interesting to note that both

winning and losing teams exhibit the same pattern over the years, suggesting independence from

game outcome.

Figure 10: Average Points Per Possession split per Season

5 Modelling Considerations

After exploring some of the underlying trends in the data, the next step would be to use that infor-

mation to model the outcome of the games. For now, all of the exploration initiatives have dealt with

P (X = x | Outcome = y), meaning we looked at the distributions of the random variables based on

information about the game outcome. For a non-deterministic prediction of the game outcome, we

are looking for the probability P (Outcome = y | X = x). In addition, there are a couple of other

challenges that present themselves with this particular dataset.

Since the dataset is ordered by winning and losing team, if we were to introduce a decision space

D = {lose, win} for the team whose ID is first mentioned, all decision values would be 1. An easy

solution would be to duplicate each observation, rename W and L to T1 for Team 1 and T2 for Team

2 and the other way around for the duplicates. Not only would that create a perfectly class-balanced

dataset, it would also artificially double the sample size.

Finally, the goal of the competition was to predict the outcome of future playoff games, for which

none of the discussed game statistics are available yet. A basic approach would be to extract the

average season statistics for each team and then to use those values to predict the outcome of the

game. A lot of Kaggle competitors also use other ’advanced statistics’ or the output of ranking systems
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as variables, or adjust variables based on some measure of opponent strength. Those concepts are

beyond the scope of this report, however.

6 Conclusion

This report analyzes the data generated over multiple seasons of NCAA Basketball in terms of ran-

dom variables and their distributions. To no surprise, positive actions in a game are more prevalent

for teams that ultimately win the game. In addition, I explored the distributions of certain random

variable interactions that are commonly used in the context of advanced basketball statistics and con-

firmed their validity. Finally, I discussed the implications and challenges in estimating the likelihood

of a team winning a specific game.
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